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1 Scope of the Chapter

This chapter is concerned with two techniques – correlation analysis and regression modelling – both of
which are concerned with determining the inter-relationships among two or more variables.

Other chapters of the NAG C Library which cover similar problems are Chapters e02 and e04. Chapter
e02 functions may be used to fit linear models by criteria other than least-squares, and also for polynomial
regression; Chapter e04 functions may be used to fit nonlinear models and linearly constrained linear
models.

2 Background to the Problems

2.1 Correlation

2.1.1 Aims of correlation analysis

Correlation analysis provides a single summary statistic – the correlation coefficient – describing the
strength of the association between two variables. The most common types of association which are
investigated by correlation analysis are linear relationships, and there are a number of forms of linear
correlation coefficients for use with different types of data.

2.1.2 Correlation coefficients

The (Pearson) product-moment correlation coefficients measure a linear relationship, while Kendall’s tau
and Spearman’s rank order correlation coefficients measure monotonicity only. All three coefficients range
from �1:0 to þ1:0. A coefficient of zero always indicates that no linear relationship exists; a þ1:0
coefficient implies a ‘perfect’ positive relationship (i.e., an increase in one variable is always associated
with a corresponding increase in the other variable); and a coefficient of �1:0 indicates a ‘perfect’ negative
relationship (i.e., an increase in one variable is always associated with a corresponding decrease in the
other variable).

Consider the bivariate scattergrams in Figure 1: (a) and (b) show strictly linear functions for which the
values of the product-moment correlation coefficient, and (since a linear function is also monotonic) both
Kendall’s tau and Spearman’s rank order coefficients, would be þ1:0 and �1:0 respectively. However,
though the relationships in figures (c) and (d) are respectively monotonically increasing and monotonically
decreasing, for which both Kendall’s and Spearman’s non-parametric coefficients would be þ1:0 (in (c))
and �1:0 (in (d)), the functions are nonlinear so that the product-moment coefficients would not take such
‘perfect’ extreme values. There is no obvious relationship between the variables in figure (e), so all three
coefficients would assume values close to zero, while in figure (f) though there is an obvious parabolic
relationship between the two variables, it would not be detected by any of the correlation coefficients
which would again take values near to zero; it is important therefore to examine scattergrams as well as the
correlation coefficients.

In order to decide which type of correlation is the most appropriate, it is necessary to appreciate the
different groups into which variables may be classified. Variables are generally divided into four types of
scales: the nominal scale, the ordinal scale, the interval scale, and the ratio scale. The nominal scale is
used only to categorise data; for each category a name, perhaps numeric, is assigned so that two different
categories will be identified by distinct names. The ordinal scale, as well as categorising the observations,
orders the categories. Each category is assigned a distinct identifying symbol, in such a way that the order
of the symbols corresponds to the order of the categories. (The most common system for ordinal variables
is to assign numerical identifiers to the categories, though if they have previously been assigned alphabetic
characters, these may be transformed to a numerical system by any convenient method which preserves the
ordering of the categories.) The interval scale not only categorises and orders the observations, but also
quantifies the comparison between categories; this necessitates a common unit of measurement and an
arbitrary zero-point. Finally, the ratio scale is similar to the interval scale, except that it has an absolute
(as opposed to arbitrary) zero-point.
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For a more complete discussion of these four types of scales, and some examples, you are referred to
Churchman and Ratoosh (1959) and Hays (1970).
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Figure 1

Product-moment correlation coefficients are used with variables which are interval (or ratio) scales; these
coefficients measure the amount of spread about the linear least-squares equation. For a product-moment
correlation coefficient, r, based on n pairs of observations, testing against the null hypothesis that there is
no correlation between the two variables, the statistic
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r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

1� r2

r

has a Student’s t-distribution with n� 2 degrees of freedom; its significance can be tested accordingly.

Ranked and ordinal scale data are generally analysed by non-parametric methods – usually either
Spearman’s or Kendall’s tau rank-order correlation coefficients, which, as their names suggest, operate
solely on the ranks, or relative orders, of the data values. Interval or ratio scale variables may also be
validly analysed by non-parametric methods, but such techniques are statistically less powerful than a
product-moment method. For a Spearman rank-order correlation coefficient, R, based on n pairs of
observations, testing against the null hypothesis that there is no correlation between the two variables, for
large samples the statistic

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

1� R2

r

has approximately a Student’s t-distribution with n� 2 degrees of freedom, and may be treated
accordingly. (This is similar to the product-moment correlation coefficient, r, see above.) Kendall’s tau
coefficient, based on n pairs of observations, has, for large samples, an approximately Normal distribution
with mean zero and standard deviation ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4nþ 10

9n n� 1ð Þ

s

when tested against the null hypothesis that there is no correlation between the two variables; the
coefficient should therefore be divided by this standard deviation and tested against the standard Normal
distribution, N 0 1ð Þ.
When the number of ordinal categories a variable takes is large, and the number of ties is relatively small,
Spearman’s rank-order correlation coefficients have advantages over Kendall’s tau; conversely, when the
number of categories is small, or there are a large number of ties, Kendall’s tau is usually preferred. Thus
when the ordinal scale is more or less continuous, Spearman’s rank-order coefficients are preferred,
whereas Kendall’s tau is used when the data is grouped into a smaller number of categories; both measures
do however include corrections for the occurrence of ties, and the basic concepts underlying the two
coefficients are quite similar. The absolute value of Kendall’s tau coefficient tends to be slightly smaller
than Spearman’s coefficient for the same set of data.

There is no authoritative dictum on the selection of correlation coefficients – particularly on the
advisability of using correlations with ordinal data. This is a matter of discretion for you.

2.1.3 Partial correlation

The correlation coefficients described above measure the association between two variables ignoring any
other variables in the system. Suppose there are three variables X ; Y and Z as shown in the path diagram
below.
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X

Z Y
The association between Y and Z is made up of the direct association between Y and Z and the association
caused by the path through X , that is the association of both Y and Z with the third variable X . For
example if Z and Y were cholesterol level and blood pressure and X were age since both blood pressure
and cholesterol level may increase with age the correlation between blood pressure and cholesterol level
eliminating the effect of age is required.

The correlation between two variables eliminating the effect of a third variable is known as the partial
correlation. If �zy, �zx and �xy represent the correlations between x, y and z then the partial correlation
between Z and Y given X is

�zy � �zx�xyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2zxð Þ 1� �2xy

� �r .

The partial correlation is then estimated by using product-moment correlation coefficients.

In general, let a set of variables be partitioned into two groups Y and X with ny variables in Y and nx
variables in X and let the variance-covariance matrix of all ny þ nx variables be partitioned into

�xx �yx

�xy �yy

� �
.

Then the variance-covariance of Y conditional on fixed values of the X variables is given by

�yjx ¼ �yy ��yx�
�1
xx �xy.

The partial correlation matrix is then computed by standardizing �yjx.

2.1.4 Robust estimation of correlation coefficients

The product-moment correlation coefficient can be greatly affected by the presence of a few extreme
observations or outliers. There are robust estimation procedures which aim to decrease the effect of
extreme values.

Mathematically these methods can be described as follows. A robust estimate of the variance-covariance
matrix, C, can be written as

C ¼ �2 ATA
� ��1

where �2 is a correction factor to give an unbiased estimator if the data is Normal and A is a lower
triangular matrix. Let xi be the vector of values for the ith observation and let zi ¼ A xi � �ð Þ, � being a
robust estimate of location, then � and A are found as solutions to
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1

n

Xn
i¼1

w zik k2
� �

zi ¼ 0

and

1

n

Xn
i¼1

w zik k2
� �

ziz
T
i � v zik k2

� �
I ¼ 0,

where w tð Þ, u tð Þ and v tð Þ are functions such that they return a value of 1 for reasonable values of t and
decreasing values for large t. The correlation matrix can then be calculated from the variance-covariance
matrix. If w, u, and v returned 1 for all values then the product-moment correlation coefficient would be
calculated.

2.1.5 Missing values

When there are missing values in the data these may be handled in one of two ways. Firstly, if a case
contains a missing observation for any variable, then that case is omitted in its entirety from all
calculations; this may be termed casewise treatment of missing data. Secondly, if a case contains a
missing observation for any variable, then the case is omitted from only those calculations involving the
variable for which the value is missing; this may be called pairwise treatment of missing data. Pairwise
deletion of missing data has the advantage of using as much of the data as possible in the computation of
each coefficient. In extreme circumstances, however, it can have the disadvantage of producing
coefficients which are based on a different number of cases, and even on different selections of cases or
samples; furthermore, the ‘correlation’ matrices formed in this way need not necessarily be positive-
definite, a requirement for a correlation matrix. Casewise deletion of missing data generally causes fewer
cases to be used in the calculation of the coefficients than does pairwise deletion. How great this
difference is will obviously depend on the distribution of the missing data, both among cases and among
variables.

Pairwise treatment does therefore use more information from the sample, but should not be used without
careful consideration of the location of the missing observations in the data matrix, and the consequent
effect of processing the missing data in that fashion.

2.2 Regression

2.2.1 Aims of regression modelling

In regression analysis the relationship between one specific random variable, the dependent or response
variable, and one or more known variables, called the independent variables or covariates, is studied.
This relationship is represented by a mathematical model, or an equation, which associates the dependent
variable with the independent variables, together with a set of relevant assumptions. The independent
variables are related to the dependent variable by a function, called the regression function, which
involves a set of unknown parameters. Values of the arguments which give the best fit for a given set of
data are obtained; these values are known as the estimates of the arguments.

The reasons for using a regression model are twofold. The first is to obtain a description of the
relationship between the variables as an indicator of possible causality. The second reason is to predict
the value of the dependent variable from a set of values of the independent variables. Accordingly, the
most usual statistical problems involved in regression analysis are:

(i) to obtain best estimates of the unknown regression arguments;

(ii) to test hypotheses about these arguments;

(iii) to determine the adequacy of the assumed model; and

(iv) to verify the set of relevant assumptions.

2.2.2 Linear regression models

When the regression model is linear in the arguments (but not necessarily in the independent variables),
then the regression model is said to be linear; otherwise the model is classified as nonlinear.
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The most elementary form of regression model is the simple linear regression of the dependent variable,
Y , on a single independent variable, x, which takes the form

E Yð Þ ¼ �0 þ �1x ð1Þ
where E Yð Þ is the expected or average value of Y and �0 and �1 are the arguments whose values are to be
estimated, or, if the regression is required to pass through the origin (i.e., no constant term),

E Yð Þ ¼ �1x ð2Þ
where �1 is the only unknown argument.

An extension of this is multiple linear regression in which the dependent variable, Y , is regressed on the
p (p > 1) independent variables, x1; x2; . . . ; xp, which takes the form

E Yð Þ ¼ �0 þ �1x1 þ �2x2 þ . . .þ �pxp ð3Þ

where �1; �2; . . . ; �p and �0 are the unknown arguments.

A special case of multiple linear regression is polynomial linear regression, in which the p independent
variables are in fact powers of the same single variable x (i.e., xj ¼ xj, for j ¼ 1; 2; . . . ; p).

In this case, the model defined by (3) becomes

E Yð Þ ¼ �0 þ �1xþ �2x
2 þ . . .þ �px

p. ð4Þ

There are a great variety of nonlinear regression models; one of the most common is exponential
regression, in which the equation may take the form

E Yð Þ ¼ aþ becx. ð5Þ
It should be noted that equation (4) represents a linear regression, since even though the equation is not
linear in the independent variable, x, it is linear in the arguments �0; �1; �2; . . . :; �p, whereas the regression
model of equation (5) is nonlinear, as it is nonlinear in the arguments (a, b and c).

2.2.3 Fitting the regression model – least-squares estimation

The method used to determine values for the arguments is, based on a given set of data, to minimize the
sums of squares of the differences between the observed values of the dependent variable and the values
predicted by the regression equation for that set of data – hence the term least-squares estimation. For
example, if a regression model of the type given by equation (3), namely

E Yð Þ ¼ �0x0 þ �1x1 þ �2x2 þ . . .þ �pxp,

where x0 ¼ 1 for all observations, is to be fitted to the n data points

x01; x11; x21; . . . ; xp1; y1
� �
x02; x12; x22; . . . ; xp2; y2
� �

..

.

x0n; x1n; x2n; . . . ; xpn; yn
� � ð6Þ

such that

yi ¼ �0x0 þ �1x1i þ �2x2i þ . . .þ �pxpi þ ei, i ¼ 1; 2; . . . ; n

where ei are unknown independent random errors with E eið Þ ¼ 0 and var eið Þ ¼ �2, �2 being a constant,
then the method used is to calculate the estimates of the regression arguments �0; �1; �2; . . . ; �p by
minimizing

Xn
i¼1

e2i . ð7Þ

If the errors do not have constant variance, i.e.,

var eið Þ ¼ �2i ¼
�2

wi
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then weighted least-squares estimation is used in which

Xn
i¼1

wie
2
i

is minimized. For a more complete discussion of these least-squares regression methods, and details of the
mathematical techniques used, see Draper and Smith (1985) or Kendall and Stuart (1973).

2.2.4 Regression models and designed experiments

One application of regression models is in the analysis of experiments. In this case the model relates the
dependent variable to qualitative independent variables known as factors. Factors may take a number of
different values known as levels. For example, in an experiment in which one of four different treatments
is applied, the model will have one factor with four levels. Each level of the factor can be represented by
a dummy variable taking the values 0 or 1. So in the example there are four dummy variables xj, for
j ¼ 1; 2; 3; 4 such that:

xij ¼ 1 if the ith observation received the jth treatment
¼ 0 otherwise,

along with a variable for the mean x0:

xi0 ¼ 1 for all i.

If there were 7 observations the data would be:

Treatment Y x0 x1 x2 x3 x4
1 y1 1 1 0 0 0
2 y2 1 0 1 0 0
2 y3 1 0 1 0 0
3 y4 1 0 0 1 0
3 y5 1 0 0 1 0
4 y6 1 0 0 0 1
4 y7 1 0 0 0 1

Models which include factors are sometimes known as General Linear (Regression) Models. When
dummy variables are used it is common for the model not to be of full rank. In the case above, the model
would not be of full rank because

xi4 ¼ xi0 � xi1 � xi2 � xi3, i ¼ 1; 2; . . . ; 7.

This means that the effect of x4 cannot be distinguished from the combined effect of x0; x1; x2 and x3. This
is known as aliasing. In this situation, the aliasing can be deduced from the experimental design and as a
result the model to be fitted; in such situations it is known as intrinsic aliasing. In the example above no
matter how many times each treatment is replicated (other than 0) the aliasing will still be present. If the
aliasing is due to a particular data set to which the model is to be fitted then it is known as extrinsic
aliasing. If in the example above observation 1 was missing then the x1 term would also be aliased. In
general intrinsic aliasing may be overcome by changing the model, e.g., remove x0 or x1 from the model,
or by introducing constraints on the arguments, e.g., �1 þ �2 þ �3 þ �4 ¼ 0.

If aliasing is present then there will no longer be a unique set of least-squares estimates for the arguments
of the model but the fitted values will still have a unique estimate. Some linear functions of the arguments
will also have unique estimates; these are known as estimable functions. In the example given above the
functions (�0 þ �1) and (�2 � �3) are both estimable.

2.2.5 Selecting the regression model

In many situations there are several possible independent variables, not all of which may be needed in the
model. In order to select a suitable set of independent variables, two basic approaches can be used.

(a) All possible regressions

In this case all the possible combinations of independent variables are fitted and the one considered
the best selected. To choose the best, two conflicting criteria have to be balanced. One is the fit of
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the model as measured by the residual sum of squares. This will decrease as more variables are added
to the model. The second criterion is the desire to have a model with a small number of significant

terms. To aid in the choice of model, statistics such as R2, which gives the proportion of variation
explained by the model, and Cp, which tries to balance the size of the residual sum of squares against
the number of terms in the model, can be used.

(b) Stepwise model building

In stepwise model building the regression model is constructed recursively, adding or deleting the
independent variables one at a time. When the model is built up the procedure is known as forward
selection. The first step is to choose the single variable which is the best predictor. The second
independent variable to be added to the regression equation is that which provides the best fit in
conjunction with the first variable. Further variables are then added in this recursive fashion, adding
at each step the optimum variable, given the other variables already in the equation. Alternatively,
backward elimination can be used. This is when all variables are added and then the variables
dropped one at a time, the variable dropped being the one which has the least effect on the fit of the
model at that stage. There are also hybrid techniques which combine forward selection with backward
elimination.

2.2.6 Examining the fit of the model

Having fitted a model two questions need to be asked: first, ‘are all the terms in the model needed?’ and
second, ‘is there some systematic lack of fit?’. To answer the first question either confidence intervals can
be computed for the arguments or t-tests can be calculated to test hypotheses about the regression
arguments – for example, whether the value of the argument, �k , is significantly different from a specified

value, bk (often zero). If the estimate of �k is �̂k and its standard error is se �̂k

� �
then the t-statistic is

�̂k � bkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se �̂k

� �r .

It should be noted that both the tests and the confidence intervals may not be independent. Alternatively
F-tests based on the residual sums of squares for different models can also be used to test the significance
of terms in the model. If model 1, giving residual sum of squares RSS1 with degrees of freedom �1, is a
sub-model of model 2, giving residual sum of squares RSS2 with degrees of freedom �2, i.e., all terms in
model 1 are also in model 2, then to test if the extra terms in model 2 are needed the F-statistic

F ¼ RSS1 �RSS2ð Þ= �1 � �2ð Þ
RSS2=�2

may be used. These tests and confidence intervals require the additional assumption that the errors, ei, are
Normally distributed.

To check for systematic lack of fit the residuals, ri ¼ yi � ŷi, where ŷi is the fitted value, should be
examined. If the model is correct then they should be random with no discernible pattern. Due to the way
they are calculated the residuals do not have constant variance. Now the vector of fitted values can be
written as a linear combination of the vector of observations of the dependent variable, y, ŷ ¼ Hy. The

variance-covariance matrix of the residuals is then I � Hð Þ�2, I being the identity matrix. The diagonal
elements of H , hii, can therefore be used to standardize the residuals. The hii are a measure of the effect of
the ith observation on the fitted model and are sometimes known as leverages.

If the observations were taken serially the residuals may also be used to test the assumption of the
independence of the ei and hence the independence of the observations.

2.2.7 Computational methods

Let X be the n by p matrix of independent variables and y be the vector of values for the dependent

variable. To find the least-squares estimates of the vector of arguments, �̂, the QR decomposition of X is
found, i.e.,

X ¼ QR�
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where R� ¼ R
0

� 	
, R being a p by p upper triangular matrix, and Q an n by n orthogonal matrix. If R is

of full rank then �̂ is the solution to

R�̂ ¼ c1

where c ¼ QTy and c1 is the first p rows of c. If R is not of full rank, a solution is obtained by means of a
singular value decomposition (SVD) of R,

R ¼ Q�
D 0
0 0

� 	
PT,

where D is a k by k diagonal matrix with non-zero diagonal elements, k being the rank of R, and Q� and P
are p by p orthogonal matrices. This gives the solution

�̂ ¼ P1D
�1QT

�1c1,

P1 being the first k columns of P and Q�1 being the first k columns of Q�.

This will be only one of the possible solutions. Other estimates may be obtained by applying constraints
to the arguments. If weighted regression with a vector of weights w is required then both X and y are

premultiplied by w1=2.

The method described above will, in general, be more accurate than methods based on forming (XTX ), (or
a scaled version), and then solving the equations

XTX
� �

�̂ ¼ XTy.

2.2.8 Robust estimation

Least-squares regression can be greatly affected by a small number of unusual, atypical, or extreme
observations. To protect against such occurrences, robust regression methods have been developed. These
methods aim to give less weight to an observation which seems to be out of line with the rest of the data
given the model under consideration. That is to seek to bound the influence. For a discussion of influence
in regression, see Hampel et al. (1986) and Huber (1981).

There are two ways in which an observation for a regression model can be considered atypical. The values
of the independent variables for the observation may be atypical or the residual from the model may be
large.

The first problem of atypical values of the independent variables can be tackled by calculating weights for
each observation which reflect how atypical it is, i.e., a strongly atypical observation would have a low
weight. There are several ways of finding suitable weights; some are discussed in Hampel et al. (1986).

The second problem is tackled by bounding the contribution of the individual ei to the criterion to be
minimized. When minimizing (7) a set of linear equations is formed, the solution of which gives the least-
squares estimates. The equations are

Xn
i¼1

eixij ¼ 0 j ¼ 0; 1; . . . ; k.

These equations are replaced by

Xn
i¼1

 ei=�ð Þxij ¼ 0 j ¼ 0; 1; . . . ; k, ð8Þ

where �2 is the variance of the ei, and  is a suitable function which down weights large values of the
standardized residuals ei=�. There are several suggested forms for  , one of which is Huber’s function,

 tð Þ ¼
�c; t < c
t; tj j � c
c; t > c

8<
: ð9Þ
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Figure 2

The solution to (8) gives the M -estimates of the regression coefficients. The weights can be included in
(8) to protect against both types of extreme value. The argument � can be estimated by the median
absolute deviations of the residuals or as a solution to, in the unweighted case,

Xn
i¼1

� ei=�̂ð Þ ¼ n� kð Þ�,

where � is a suitable function and � is a constant chosen to make the estimate unbiased. � is often chosen

to be  2=2 where  is given in (9). Another form of robust regression is to minimize the sum of absolute
deviations, i.e.,

Xn
i¼1

eij j.

For details of robust regression, see Hampel et al. (1986) and Huber (1981).

Robust regressions using least absolute deviations can be computed using functions in Chapter e02.

2.2.9 Generalized linear models

Generalized linear models are an extension of the general linear regression model discussed above. They
allow a wide range of models to be fitted. These included certain non-linear regression models, logistic
and probit regression models for binary data, and log-linear models for contingency tables. A generalized
linear model consists of three basic components:

(a) A suitable distribution for the dependent variable Y . The following distributions are common:

(i) Normal

(ii) binomial

(iii) Poisson

(iv) gamma

In addition to the obvious uses of models with these distributions it should be noted that the Poisson
distribution can be used in the analysis of contingency tables while the gamma distribution can be
used to model variance components. The effect of the choice of the distribution is to define the
relationship between the expected value of Y , E Yð Þ ¼ 	, and its variance and so a generalized linear
model with one of the above distributions may be used in a wider context when that relationship
holds.

(b) A linear model 
 ¼
P
�jxj, 
 is known as a linear predictor.

(c) A link function g �ð Þ between the expected value of Y and the linear predictor, g 	ð Þ ¼ 
. The
following link functions are available:

For the binomial distribution �, observing y out of t:

(i) logistic link: 
 ¼ log 	
t�	

� �
;

(ii) probit link: 
 ¼ ��1 	
t

� �
;

(iii) complementary log-log: 
 ¼ log � log 1� 	
t

� �� �
.
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For the Normal, Poisson, and gamma distributions:

(i) exponent link: 
 ¼ 	a, for a constant a;

(ii) identity link: 
 ¼ 	;

(iii) log link: 
 ¼ log	;

(iv) square root link: 
 ¼ ffiffiffi
	

p
;

(v) reciprocal link: 
 ¼ 1
	.

For each distribution there is a canonical link. For the canonical link there exist sufficient statistics
for the arguments. The canonical links are:

(i) Normal – identity;

(ii) binomial – logistic;

(iii) Poisson – logarithmic;

(iv) gamma – reciprocal.

For the general linear regression model described above the three components are:

(i) Distribution – Normal;

(ii) Linear model –
P
�jxj;

(iii) Link – identity.

The model is fitted by maximum likelihood; this is equivalent to least-squares in the case of the Normal
distribution. The residual sums of squares used in regression models is generalized to the concept of
deviance. The deviance is the logarithm of the ratio of the likelihood of the model to the full model in
which 	̂i ¼ yi, where 	̂i is the estimated value of 	i. For the Normal distribution the deviance is the

residual sum of squares. Except for the case of the Normal distribution with the identity link, the �2 and
F-tests based on the deviance are only approximate; also the estimates of the arguments will only be
approximately Normally distributed. Thus only approximate z- or t-tests may be performed on the
argument values and approximate confidence intervals computed.

The estimates are found by using an iterative weighted least-squares procedure. This is equivalent to the
Fisher scoring method in which the Hessian matrix used in the Newton–Raphson method is replaced by its
expected value. In the case of canonical links the Fisher scoring method and the Newton–Raphson method
are identical. Starting values for the iterative procedure are obtained by replacing the 	i by yi in the
appropriate equations.

2.2.10 Linear mixed effects regression

The general linear regression model described in the preceding subsections was concerned with fitting a
model of the form

E Yð Þ ¼ X�

where Y is a vector of dependent variables, E Yð Þ is the expected or average value of Y , X is a matrix of
explanatory variables and � is a vector of arguments whose values are to be estimated. Two of the
assumptions underlying this model are that dependent variables have a Gaussian distribution with variance

I�2, for identity matrix I , and the levels of the independent variables are fixed. That is, if the experiment
or process from which the data was collected is repeated, then the same levels of X will be used. Linear
mixed effects regression relaxes this last assumption, allowing both fixed and random independent
variables to be included in the model.

For Linear mixed effects regression the model is of the form

E Yð Þ ¼ X� þ Z�

where Y is a vector of n observations on the dependent variable,

X is a known n by p design matrix for the fixed independent variables,

� is a vector of length p of unknown fixed effects,
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Z is a known n by q design matrix for the random independent variables,

and � is a vector of length q of unknown random effects.

The dependent variable, Y , has a Gaussian distribution, with variance

G 0
0 R

� �

where R ¼ �2RI , I is the n� n identity matrix and G is a diagonal matrix with the diagonal elements taking

one of the values �2i : i ¼ 1; 2 . . . g

 �

. The model can be fit using either maximum likelihood or restricted
maximum likelihood, with the estimates of the variance components (�s) being found iteratively.

3 Recommendations on Choice and Use of Available Functions

3.1 Correlation

3.1.1 Product-moment correlation

Let SSx be the sum of squares of deviations from the mean, �x, for the variable x for a sample of size n,
i.e.,

SSx ¼
Xn
i¼1

xi � �xð Þ2

and let SCxy be the cross-products of deviations from the means, �x and �y, for the variables x and y for a
sample of size n, i.e.,

SCxy ¼
Xn
i¼1

xi � �xð Þ yi � �yð Þ.

Then the sample covariance of x and y is

cov x; yð Þ ¼
SCxy

n� 1ð Þ
and the product-moment correlation coefficient is

r ¼ cov x; yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var xð Þ var yð Þ

p ¼
SCxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSxSSy

q .

nag_sum_sqs (g02buc) computes the sample sums of squares and cross-products deviations from the
means (optionally weighted). nag_sum_sqs_update (g02btc) updates the sample sums of squares and
cross-products and deviations from the means by the addition/deletion of a (weighted) observation.
nag_cov_to_corr (g02bwc) computes the product-moment correlation coefficients from the sample sums of
squares and cross-products of deviations from the means. The three functions compute only the upper
triangle of the correlation matrix which is stored in a one-dimensional array in packed form. nag_corr_cov
(g02bxc) computes both the (optionally weighted) covariance matrix and the (optionally weighted)
correlation matrix. These are returned in two-dimensional arrays. (Note that nag_sum_sqs_update
(g02btc) and nag_sum_sqs (g02buc) can be used to compute the sums of squares from zero.)

3.1.2 Product-moment correlation with missing values

If there are missing values then nag_sum_sqs (g02buc) and nag_corr_cov (g02bxc), as described above,
will allow casewise deletion by you giving the observation zero weight (compared with unit weight for an
otherwise unweighted computation).

3.1.3 Non-parametric correlation

nag_ken_spe_corr_coeff (g02brc) computes Kendall and/or Spearman non-parametric rank correlation
coefficients. The function allows for a subset of variables to be selected and for observations to be
excluded from the calculations if, for example, they contain missing values.
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3.1.4 Partial correlation

nag_partial_corr (g02byc) computes a matrix of partial correlation coefficients from the correlation
coefficients or variance-covariance matrix returned by nag_corr_cov (g02bxc).

3.1.5 Robust correlation

nag_robust_m_corr_user_fn (g02hlc) and nag_robust_m_corr_user_fn_no_derr (g02hmc) compute robust
estimates of the variance-covariance matrix by solving the equations

1

n

Xn
i¼1

w zik k2
� �

zi ¼ 0

and

1

n

Xn
i¼1

u zik k2
� �

ziz
T
i � v zik k2

� �
I ¼ 0,

as described in Section 2.1.3 for user-supplied functions w and u. Two options are available for v, either
v tð Þ ¼ 1 for all t or v tð Þ ¼ u tð Þ.
nag_robust_m_corr_user_fn_no_derr (g02hmc) requires only the function w and u to be supplied while
nag_robust_m_corr_user_fn (g02hlc) also requires their derivatives.

In general nag_robust_m_corr_user_fn (g02hlc) will be considerably faster than
nag_robust_m_corr_user_fn_no_derr (g02hmc) and should be used if derivatives are available.

nag_robust_corr_estim (g02hkc) computes a robust variance-covariance matrix for the following functions:

u tð Þ ¼ au=t
2 if t < a2u

u tð Þ ¼ 1 if a2u � t � b2u
u tð Þ ¼ bu=t

2 if t > b2u

and

w tð Þ ¼ 1 if t � cw
w tð Þ ¼ cw=t if t > cw

for constants au, bu and cw.

These functions solve a minimax space problem considered by Huber (1981). The values of au, bu and cw
are calculated from the fraction of gross errors; see Hampel et al. (1986) and Huber (1981).

To compute a correlation matrix from the variance-covariance matrix nag_cov_to_corr (g02bwc) may be
used.

3.2 Regression

3.2.1 Simple linear regression

Two functions are provided for simple linear regression. The function nag_simple_linear_regression
(g02cac) calculates the argument estimates for a simple linear regression with or without a constant term.
The function nag_regress_confid_interval (g02cbc) calculates fitted values, residuals and confidence
intervals for both the fitted line and individual observations. This function produces the information
required for various regression plots.
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3.2.2 Multiple linear regression – general linear model

nag_regsn_mult_linear (g02dac) fits a general linear regression model using the QR method
and an SVD if the model is not of full rank. The results
returned include: residual sum of squares, argument
estimates, their standard errors and variance-covariance
matrix, residuals and leverages. There are also several
functions to modify the model fitted by
nag_regsn_mult_linear (g02dac) and to aid in the
interpretation of the model.

nag_regsn_mult_linear_addrem_obs (g02dcc) adds or deletes an observation from the model.

nag_regsn_mult_linear_upd_model (g02ddc) computes the argument estimates, and their standard errors
and variance-covariance matrix for a model that is modified
by nag_regsn_mult_linear_addrem_obs (g02dcc),
nag_regsn_mult_linear_add_var (g02dec) or
nag_regsn_mult_linear_delete_var (g02dfc).

nag_regsn_mult_linear_add_var (g02dec) adds a new variable to a model.

nag_regsn_mult_linear_delete_var (g02dfc) drops a variable from a model.

nag_regsn_mult_linear_newyvar (g02dgc) fits the regression to a new dependent variable, i.e., keeping
the same independent variables.

nag_regsn_mult_linear_tran_model (g02dkc) calculates the estimates of the arguments for a given set of
constraints, (e.g., arguments for the levels of a factor sum to
zero) for a model which is not of full rank and the SVD has
been used.

nag_regsn_mult_linear_est_func (g02dnc) calculates the estimate of an estimable function and its
standard error.

Note: nag_regsn_mult_linear_add_var (g02dec) also allows you to initialize a model building process and
then to build up the model by adding variables one at a time.

3.2.3 Selecting regression models

To aid the selection of a regression model the following functions are available.

nag_all_regsn (g02eac) computes the residual sums of squares for all possible regressions for a
given set of dependent variables. The function allows some variables to be
forced into all regressions.

nag_cp_stat (g02ecc) computes the values of R2 and Cp from the residual sums of squares as
provided by nag_all_regsn (g02eac).

nag_step_regsn (g02eec) enables you to fit a model by forward selection. You may call
nag_step_regsn (g02eec) a number of times. At each call the function will
calculate the changes in the residual sum of squares from adding each of the
variables not already included in the model, select the variable which gives
the largest change and then if the change in residual sum of squares meets
the given criterion will add it to the model.

nag_full_step_regsn (g02efc) uses a full stepwise selection to choose a subset of the explanatory variables.
The method repeatedly applies a forward selection step followed by a
backward elimination step until neither step updates the current model.
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3.2.4 Residuals

nag_regsn_std_resid_influence (g02fac) computes the following standardized residuals and measures of
influence for the residuals and leverages produced by
nag_regsn_mult_linear (g02dac):

(i) Internally studentized residual;

(ii) Externally studentized residual;

(iii) Cook’s D statistic;

(iv) Atkinson’s T statistic.

nag_durbin_watson_stat (g02fcc) computes the Durbin–Watson
test statistic and bounds for its significance to test for serial
correlation in the errors, ei.

3.2.5 Robust regression

For robust regression using M -estimates instead of least-squares the function nag_robust_m_regsn_estim
(g02hac) will generally be suitable. nag_robust_m_regsn_estim (g02hac) provides a choice of four  -
functions (Huber’s, Hampel’s, Andrew’s and Tukey’s) plus two different weighting methods and the option
not to use weights. If other weights or different  -functions are needed the function
nag_robust_m_regsn_user_fn (g02hdc) may be used. nag_robust_m_regsn_user_fn (g02hdc) requires
you to supply weights, if required, and also functions to calculate the  -function and, optionally, the �-
function. nag_robust_m_regsn_wts (g02hbc) can be used in calculating suitable weights. The function
nag_robust_m_regsn_param_var (g02hfc) can be used after a call to nag_robust_m_regsn_user_fn
(g02hdc) in order to calculate the variance-covariance estimate of the estimated regression coefficients.

For robust regression, using least absolute deviation, nag_lone_fit (e02gac) can be used.

3.2.6 Generalized linear models

There are four functions for fitting generalized linear models. The output includes: the deviance, argument
estimates and their standard errors, fitted values, residuals and leverages. The functions are:

nag_glm_normal (g02gac) – Normal distribution

nag_glm_binomial (g02gbc) – binomial distribution

nag_glm_poisson (g02gcc) – Poisson distribution

nag_glm_gamma (g02gdc) – gamma distribution

While nag_glm_normal (g02gac) can be used to fit linear regression models (i.e., by using an identity link)
this is not recommended as nag_regsn_mult_linear (g02dac) will fit these models more efficiently.
nag_glm_poisson (g02gcc) can be used to fit log-linear models to contingency tables.

In addition to the functions to fit the models there are two functions to aid the interpretation of the model if
a model which is not of full rank has been fitted, i.e., aliasing is present.

nag_glm_tran_model (g02gkc) computes argument estimates for a set of constraints, (e.g., sum of effects
for a factor is zero), from the SVD solution provided by the fitting
function.

nag_glm_est_func (g02gnc) calculates an estimate of an estimable function along with its standard
error.

3.2.7 Linear mixed effects regression

There are two functions for fitting Linear mixed effects regression. The functions are:

nag_reml_mixed_regsn (g02jac) uses restricted maximum likelihood (REML) to fit the model

nag_ml_mixed_regsn (g02jbc) uses maximum likelihood to fit the model
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for both functions the output includes: either the maximum likelihood or restricted maximum likelihood
and the fixed and random argument estimates, along with their standard errors.

As the estimates of the variance components are found using an iterative procedure initial values must be
supplied for each �. In both functions you can either specify these initial values, or allow the function to
calculate them from the data using minimum variance quadratic unbiased estimation (MIVQUE0). Setting
the maximum number of iterations to zero in either function will return the corresponding likelihood,
argument estimates and standard errors based on these initial values.

3.2.8 Polynomial regression and non-linear regression

No functions are currently provided in this chapter for polynomial regression. If you wish to perform
polynomial regressions you have three alternatives: you can use the multiple linear regression functions,
nag_regsn_mult_linear (g02dac), with a set of independent variables which are in fact simply the same
single variable raised to different powers, or you can use the function nag_dummy_vars (g04eac) to
compute orthogonal polynomials which can then be used with nag_regsn_mult_linear (g02dac), or you can
use the functions in Chapter e02 (Curve and Surface Fitting) which fit polynomials to sets of data points
using the techniques of orthogonal polynomials. This latter course is to be preferred, since it is more
efficient and liable to be more accurate, but in some cases more statistical information may be required
than is provided by those functions, and it may be necessary to use the functions of this chapter.

More general nonlinear regression models may be fitted using the optimization functions in Chapter e04,
which contains functions to minimize the function

Xn
i¼1

e2i

where the regression arguments are the variables of the minimization problem.

4 Index

Generalized linear models:
Binomial errors ....................................................................................... nag_glm_binomial (g02gbc)
computes estimable function .................................................................. nag_glm_est_func (g02gnc)
Gamma errors ................................................................................................ nag_glm_gamma (g02gdc)
Normal errors ................................................................................................ nag_glm_normal (g02gac)
Poisson errors ............................................................................................. nag_glm_poisson (g02gcc)
transform model parameters ............................................................... nag_glm_tran_model (g02gkc)

Linear mixed effects regression:
via maximum likelihood (ML) ......................................................... nag_ml_mixed_regsn (g02jbc)
via restricted maximum likelihood (REML) .............................. nag_reml_mixed_regsn (g02jac)

Multiple linear regression/General linear model:
add independent variable to model ........................... nag_regsn_mult_linear_add_var (g02dec)
add/delete observation from model ..................... nag_regsn_mult_linear_addrem_obs (g02dcc)
computes estimable function ....................................... nag_regsn_mult_linear_est_func (g02dnc)
delete independent variable from model ............ nag_regsn_mult_linear_delete_var (g02dfc)
general linear regression model ................................................... nag_regsn_mult_linear (g02dac)
regression for new dependent variable ..................... nag_regsn_mult_linear_newyvar (g02dgc)
regression parameters from updated model ............ nag_regsn_mult_linear_upd_model (g02ddc)
transform model parameters ................................. nag_regsn_mult_linear_tran_model (g02dkc)

Non-parametric rank correlation (Kendall and/or Spearman):
missing values

casewise treatment of missing values
preserving input data ...................................................... nag_ken_spe_corr_coeff (g02brc)

Product moment correlation:
correlation matrix

compute correlation and covariance matrices .......................................... nag_corr_cov (g02bxc)
compute from sum of squares matrix ................................................ nag_cov_to_corr (g02bwc)
compute partial correlation and covariance matrices ..................... nag_partial_corr (g02byc)
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sum of squares matrix
compute ......................................................................................................... nag_sum_sqs (g02buc)
update ............................................................................................. nag_sum_sqs_update (g02btc)

Residuals:
Durbin–Watson test ..................................................................... nag_durbin_watson_stat (g02fcc)
standardized residuals and influence statistics ............ nag_regsn_std_resid_influence (g02fac)

Robust correlation:
Huber’s method .............................................................................. nag_robust_corr_estim (g02hkc)
user-supplied weight function only .................. nag_robust_m_corr_user_fn_no_derr (g02hmc)
user-supplied weight function plus derivatives .................. nag_robust_m_corr_user_fn (g02hlc)

Robust regression:
compute weights for use with nag_robust_m_regsn_user_fn (g02hdc)

nag_robust_m_regsn_wts (g02hbc)
standard M -estimates ............................................................... nag_robust_m_regsn_estim (g02hac)
user supplies weight functions .......................................... nag_robust_m_regsn_user_fn (g02hdc)
variance-covariance matrix following nag_robust_m_regsn_user_fn (g02hdc)

nag_robust_m_regsn_param_var (g02hfc)
Selecting regression model:

all possible regressions ................................................................................. nag_all_regsn (g02eac)
forward selection .......................................................................................... nag_step_regsn (g02eec)

R2 and Cp statistics .......................................................................................... nag_cp_stat (g02ecc)

Simple linear regression:
simple linear regression ................................................ nag_simple_linear_regression (g02cac)
simple linear regression,

no intercept .................................................................. nag_regress_confid_interval (g02cbc)
Stepwise linear regression:

Clarke’s sweep algorithm ............................................................... nag_full_step_regsn (g02efc)
Clarke’s sweep algorithm ................................................... nag_full_step_regsn_monit (g02ewc)

5 Functions Withdrawn or Scheduled for Withdrawal

None.
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